
Parallel 3-D Electromagnetic Particle code using
High Performance Fortran: Parallel TRISTAN

Dongsheng Cai1, Yaoting Li1,3, Ken-Ichi Nishikawa2, Chijie Xiao1,3, Xiaoyang
Yan1, and Zuying Pu3

1 Institute of Information Sciences and Electronics,
The University of Tsukuba, Ibaraki 305-8573, Japan
email:{cai, ytli, cjxiao, yxy }@is.tsukuba.ac.jp

2 National Space Science and Technology Center, 320 Sparkman Drive, SD 50,
Huntsville, AL 35805 USA email: Ken-Ichi.Nishikawa@nsstc.nasa.gov

3 Department of geophysics, Peking University,
Beijing 100871, China
email:zypu@pku.edu.cn

Abstract. A three-dimensional full electromagnetic particle-in-cell (PIC) code, TRIS-
TAN (Tridimensional Stanford) code, has been parallelized using High Performance
Fortran (HPF) as a RPM (Real Parallel Machine). In the parallelized HPF code, the
simulation domain is decomposed in one-dimension, and both the particle and field
data located in each domain that we call the sub-domain are distributed on each pro-
cessor. Both the particle and field data on a sub-domain are needed by the neighbor
sub-domains and thus communications between the sub-domains are inevitable. Our
simulation results using HPF exhibit the promising applicability of the HPF com-
munications to a large scale scientific computing such as solar wind-magnetosphere
interactions.

1 Introduction

This paper reports on parallelization of Tridimensional Stanford (TRISTAN)
code (Buneman, 1993) that is a three-dimensional electromagnetic full particle
code developed at Stanford University on a two-way PentiumPro PC cluster that
consists of 16 distributed SMPs and other commercial parallel computers like
Fujitsu VPP5000, NEC SX-6 and Hitachi SR-8000 etc. using High Performance
Fortran (HPF).

In our parallel program, the simulation domain is decomposed into the sub-
domains as shown in Fig. 1. The Particle-In-Cell (PIC) computation in TRIS-
TAN to be performed on a certain sub-domain or on a certain processor where
the sub-domain is distributed will typically require the data from their neighbor
processors to proceed the whole PIC simulations. Here we distribute the field
arrays and the particles over processors as indicated in Fig. 1. Thus the data
must be transferred between processors in each time step so as to allow PIC sim-
ulation to proceed in time. These inter-processor communications in each time
step need to be programmed in HPF constructs.

The amount of inter-processor communications needed for a parallel program
basically depends on the algorithms and the scales of the physical problem sizes

2 Dongsheng Cai et al.

adopted in the simulations. In PIC simulations, they are the way decomposing
the simulation domains, the sizes of the sub-domain boundaries, and the number
of the particles in a cell, respectively.

The pgHPF compiler of Portland Group Inc. aims to realize the standard
High Performance Fortran specification and can be installed on a number of
parallel machines. Executable codes produced by the pgHPF compilers for PCs
with IA-32 CPUs are unconstrained, and can be executed on any compatible
IA-32 processor-based system regardless of whether the pgHPF compilers are
installed on that system or not. From the HPF programmer’s point of view, the
differences between versions of the pgHPF runtime library have little effect on
program developments.

In parallel programming models, usually, the SPMD (Single Program Mul-
tiple Data) models using MPI (Message Passing Interface) or PVM (Parallel
Virtual Machine) are one of the most popular models. Our HPF TRISTAN code
also uses the same SPMD models. The biggest advantage of HPF is its pro-
gramming style. Once the simulation domain is decomposed and the data are
distributed to each sub-domains or over processors using simple HPF compiler
directives, other HPF programming styles are very similar to those in usual For-
trans. Of course, the biggest problem here is the performance issues comparing
with those using MPI or PVM.

Actually, pgHPF is based on a RPM (PGI Proprietary Communications -
Real Parallel Machine) protocol. This transport mechanism was developed by

Fig. 1. Coordinate of the simulation domains and domain decomposition in x.

Parallel TRISTAN code using High Performance Fortran 3

PGI to model the behavior of PVM among a homogeneous group of hosts on
a network. It offers both greater programming efficiency and performance than
PVM with fewer requirements. In this paper, to archive a similar high perfor-
mance using HPF comparing with that using MPI or PVM in the full electro-
magnetic PIC simulation, some careful optimizations of inter-processor commu-
nications are proposed.

Our code is the same as TRISTAN code except for the parallelization part,
which utilizes rigorous charge-conserving formulas and radiating boundary con-
ditions (Buneman, 1993). It was written in HPF so that the code can be run on
any parallel computers with the HPF compilers.

The parallelization part of our HPF TRISTAN code is same as (Liewer and
Decyk, 1985) and (Decyk, 1995). We separate the communication parts from
computation parts, and use both the “particle manager” and the “field manager”
to localize the inter-processor communications (Decyk, 1995) as shown in Fig.
2. Thus the code can be easily converted to MPI or PVM version of TRISTAN
code.

Fig. 2. The computational cycle of the HPF TRISTAN code. The black boxes represent
HPF communications.

The basic controlling equations of the plasmas are Newton-Lorentz equation:

mi,e
dvi,e

dt
= qi,e(E + vi,e ×B), (1)

4 Dongsheng Cai et al.

where i and e corresponds to ion and electron, respectively, and Maxwell equa-
tions:

∂B

∂t
= −5×E, (2)

∂E

∂t
= c2 5×B − 1

ε0
J , (3)

Here
J =

∑
(niqivi − neqeve). (4)

The coordinate and one-dimensional domain decomposition using in the simula-
tion domain is shown in Fig. 1. For parallel benchmarking purposes, we perform
the real simulations of solar wind-magnetosphere interactions using the code. For
the simulation of solar wind-magnetosphere interactions, the following bound-
ary conditions were used for the particles (Buneman, 1993): (1) Fresh particles
representing the incoming solar wind (unmagnetized in our test run) are con-
tinuously injected across the yz plane at x = xmin with a thermal velocity plus
a bulk velocity in the +x direction; (2) Thermal solar particle flux is also in-
jected across the sides of our rectangular computation domain; (3) Escaping
particles are arrested in a buffer zone, redistributed in those grid they escaped
more uniformly by making the zone conducting in order to simulate their escape
to infinity, and finally written off. We use a simple model for the ionosphere
where both electrons and ions are reflected by the Earth dipole magnetic field.
The effects of the Earth rotation are not included. The effect of thermal expan-
sion of the solar-wind is also not included. Since the solar-wind and the Earth
dipole magnetic field are included, some load-imbalance due to this asymmetry
is expected in this HPF TRISTAN code. In section 2, some basics of TRISTAN
code and the ways to run it are introduced. In section 3, basics of HPF TRIS-
TAN data structure and array distributions are discussed. In section 4 and 5,
field and particle data domain decompositions and the way of communication
between processors are discussed, respectively. In section 6, unstability of the
HPF communication and the way that avoids the performance degradation are
discussed. In section 7, benchmark and simulation results of the HPF TRISTAN
code on PC cluster are discussed. Section 8 concludes the remarks of this paper.

2 Basics of TRISTAN code

The control equations of TRISTAN code are Maxwell and Newton-Lorentz equa-
tions only. Instead of solving Poisson equation that is solved numerically in al-
most all particle simulation codes, TRISTAN code solves only two curls, i.e.
Ampere and Faraday equations. A rigorous charge conservation method for the
current deposits is described in (Villasenor and Buneman, 1992).

The particles that are initialized as unmagnetized Maxwell distribution are
updated by the leap-frog method. Throughout the code the linear interpolation
is employed. The computational cycle of HPF TRISTAN code is displayed in

Parallel TRISTAN code using High Performance Fortran 5

Fig. ??. The black boxes in the figure are HPF communication subroutines and
they are field and particle managers.

2.1 Fields

TRISTAN code scales such that ε0 = 1 and hence µ0 = 1/c2. This also means
E = D. Instead of recording components of B or H, TRISTAN records bx, by, bz
of cB (alias H/c). This makes symmetry for electric field and magnetic field
(E ←→ B) in Maxwell equations. Throughout, TRISTAN uses a rectangular
cubic grid with δx = δy = δz = 1 and time discretisation with δt = 1. Before
and after moving (or pushing) the particles, B is updated in two half steps so
that it is available at the same time as E for the particle update.

In TRISTAN code, only two curls of Maxwell equations are solved:

∂B
∂t

= −∇×E, (5)

∂D
∂t

= ∇×H− J. (6)

and here

B = µ0H, (7)

D = ε0E. (8)

If we scale Maxwell equations using ε0 = 1, and substitute E = D, B = cB
into eq. (5) and (6), we obtain:

∂

∂t
B = −c∇×E, (9)

∂

∂t
E = c∇×B− J. (10)

These two equations imply the fields symmetry(E ←→ B).

2.2 Magnetic Field Update

The staggered grid mesh system, known in the computational electromagnetic
community as Yee lattice (Yee, 1966), is shown in Fig. 3. It ensures that the
change of B flux through a cell surface equals the negative circulation of E
around that surface and the change of E flux through a cell surface equals the
circulation of B around that surface minus the current through it. Here B and E
are in a symmetry form except subtracting the charge flux J in Ampere equation.
Charge flux J is calculated and subtracted after the particles are moved later in
the program. Thus magnetic fields are updated as follows:

The change of B flux can be expressed as:

6 Dongsheng Cai et al.

∂B
∂t = −c

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

ex ey ez

∣∣∣∣∣∣

= c[i(∂ey

∂z − ∂ez

∂y)
+ j(∂ez

∂x − ∂ex

∂z)
+ k(∂ex

∂y − ∂ey

∂x)]
(11)

In Yee lattice, ex, ey, ez, bx, by, and bz are, respectively, staggered and shifted
on 0.5 from (i, j, k) and located at the positions as follows:

ex(i, j, k) → ex(i + .5, j, k),
ey(i, j, k) → ey(i, j + .5, k),
ez(i, j, k) → ez(i, j, k + .5),

(12)

and

bx(i, j, k) → bx(i, j + .5, k + .5),
by(i, j, k) → by(i + .5, j, k + .5),
bz(i, j, k) → bz(i + .5, j + .5, k).

(13)

In our simulation, we use integer grids. In both Eq. (12) and (13), i, j, k in the
right-hand sides correspond to Fortran array indices notations and i, j, k in the
left hand sides correspond to the real positions in the simulation domains as
shown in Fig. 3. In this report, if the values “0.5” are added to either i, j, k in
the array indices, then the array indices correspond to the real positions in the
simulation domains.

Fig. 3. The positions of field components in Yee lattice.

Parallel TRISTAN code using High Performance Fortran 7

Thus the magnetic field components bx, by, bz are, respectively, updated by
the negative circulation of E around Yee lattice surface as follows:

∂
∂tbx = (bnew

x (i, j + .5, k + .5)− bold
x (i, j + .5, k + .5))/δt

= c[(ey(i, j + .5, k + 1)− ey(i, j + .5, k))/δz
−(ez(i, j + 1, k + .5)− ez(i, j, k + .5))/δy].

(14)

Here δt = δz = δy = δx = 1. Thus we get the update form:

bnew
x (i, j, k) = bold

x (i, j, k)
+c[ey(i, j, k + 1)− ey(i, j, k)− ez(i, j + 1, k) + ez(i, j, k)]. (15)

To get the update form of by, and bz, the same procedures are as followed:

∂
∂tby = (bnew

y (i + .5, j, k + .5)− bold
y (i + .5, j, k + .5))/δt

= c[(ez(i + 1, j, k + .5)− ez(i, j, k + .5))/δx
− (ex(i + .5, j, k + 1)− ex(i + .5, j, k))/δz],

(16)

bnew
y (i, j, k) = bold

y (i, j, k)
+c[ez(i + 1, j, k)− ez(i, j, k)− ex(i, j, k + 1) + ex(i, j, k)], (17)

∂
∂tbz = (bnew

z (i + .5, j + .5, k)− bold
z (i + .5, j + .5, k))/δt

= c[(ex(i + .5, j + 1, k)− ex(i + .5, j, k))/δy
− (ey(i + 1, j + .5, k)− ey(i, j + .5, k))/δx],

(18)

bnew
z (i, j, k) = bold

z (i, j, k)
+c[ex(i, j + 1, k)− ex(i, j, k)− ey(i + 1, j, k) + ey(i, j, k)]. (19)

2.3 Electric Field Update

In Yee lattice, ex, ey, and ez are, respectively, staggered and shifted 0.5 from
(i, j, k) and located at the positions as shown in Fig. 3.

The change of E flux through a cell surface equals the circulation of B around
that surface minus the current through it. First, the electric field is updated by
the circulation of B around Yee lattice surface as follows:

∂E
∂t = c

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

bx by bz

∣∣∣∣∣∣

= c[i(∂bz

∂y − ∂by

∂z)
+ j(∂bx

∂z − ∂bz

∂x)
+ k(∂by

∂x − ∂bx

∂y)]
(20)

Thus the electric field components ex, ey, ez are, respectively, updated by
the circulation of B around Yee lattice surface as follows:

∂
∂tex = (enew

x (i + .5, j, k)− eold
x (i + .5, j, k))/δt

= c[(bz(i + .5, j + .5, k)− bz(i + .5, j − .5, k))/δy
− (by(i + .5, j, k + .5)− by(i + .5, j, k − .5))/δz],

(21)

8 Dongsheng Cai et al.

enew
x (i, j, k) = eold

x (i, j, k)
+c[by(i, j, k − 1)− by(i, j, k)− bz(i, j − 1, k) + bz(i, j, k)], (22)

∂
∂tey = (enew

y (i, j + .5, k)− eold
y (i, j + .5, k))/δt

= c[(bx(i, j + .5, k + .5)− bx(i, j + .5, k − .5))/δz
− (bz(i + .5, j + .5, k)− bz(i− .5, j + .5, k))/δx],

(23)

enew
y (i, j, k) = eold

y (i, j, k)
+c[bz(i− 1, j, k)− bz(i, j, k)− bx(i, j, k − 1) + bx(i, j, k)], (24)

∂
∂tez = (enew

z (i, j, k + .5)− eold
z (i, j, k + .5))/δt

= c[(by(i + .5, j, k + .5)− by(i− .5, j, k + .5))/δx
− (bx(i, j + .5, k + .5)− bx(i, j − .5, k + .5))/δy],

(25)

enew
z (i, j, k) = eold

z (i, j, k)
+c[bx(i, j − 1, k)− bx(i, j, k)− by(i− 1, j, k) + by(i, j, k)]. (26)

After updating the electric field by the circulation of the magnetic field
around that Yee lattice surface, charge flux J are calculated and subtracted
after the particles are moved later in the program.

2.4 Particle Update

Newton-Lorentz equations are already in typical “update” form. The time cen-
tered finite difference version of the Newton-Lorentz particle update is:

vnew − vold =
qδt

m
< E +

1
2
(vnew + vold)×B > (27)

rnext − rpresent = δtvnew (28)

This shows that position must be leap-frogged over velocities. Hatree and
Boris found a good physical interpretation of the steps in this explicit procedure:

[1] Half an electric acceleration:

v0 ←− vold (29)

or
v0 = vold + qEδt/2m (30)

[2] Pure magnetic rotation:

v1 ←− v0 (31)

Parallel TRISTAN code using High Performance Fortran 9

or
v1 − v0 = (v1 + v0)× qBδt/2m (32)

[3] Another half electric acceleration:

vnew ←− v1 (33)

or
vnew = v1 + qEδt/2m (34)

The Eq. (32) determining v1 from v0 is still implicit but its explicit form
follows from: (1) dotting with v1 + v0 to check that the magnetic field does not
work and that the magnitudes of v1 and v0 are the same, (2) dotting with B
to check that components along B are the same, (3) crossing with qBδ/2m and
substituting back, then to give

v1 = v0 + 2× v0 + v0 × b0

1 + b2
0

× b0 (35)

2.5 Relativistic generalization

In the code, the particle trajectory is integrated using a time-centered leap-frog
scheme. Let

u = v , γ2 = (1− u2

c2
)−1 (36)

Here γ is denoted by relativistic factor. Newton-Lorentz Eq. (27) gives:

un+ 1
2 − un− 1

2 =
qδt

m
[En +

1
2γn

(un+ 1
2 + un− 1

2)×Bn] (37)

rn+1 = rn + vn+ 1
2 δt = rn +

un+ 1
2 δt

γn+ 1
2

(38)

where

(γn+ 1
2)2 = 1 + (

un+ 1
2

c
)2 (39)

2.6 Force Interpretations

In Eq. (37), E and B are interpolated from the grids to the particle positions
in Yee lattice. Throughout the code, linear interpolation is employed for subgrid
resolution. This means that there is no stringent lower limit to the sizes of such
quantities as gyroradii or Debye lengths. For quantities recorded on the integer
mesh x = i, y = j, z = k, this means interpolating the eight nearest entries by
applying weights so-called “volume” weights (Buneman, 1993). For example, the

10 Dongsheng Cai et al.

Fig. 4. The positions of field components in Yee lattice. A particle is located at the
point P.

“volume” weight for (i, j, k) is (1 − dx)(1 − dy)(1 − dz) = cx ∗ cy ∗ cz and for
(i + 1, j + 1, k + 1) is dx ∗ dy ∗ dz.

In Yee lattice as shown in Fig. 4, the interpolated force at (x, j, k) exerted by
the electric field components ex is denoted by F(x,j,k)

ex and expressed as follows:

F(x,j,k)
ex

= ex(i, j, k) + [ex(i + 1, j, k)− ex(i, j, k)]δx, (40)

Here
ex(i, j, k) =

1
2
{ex(i, j, k) + ex(i− 1, j, k)}, (41)

ex(i + 1, j, k) =
1
2
{ex(i + 1, j, k) + ex(i, j, k)}. (42)

In Yee lattice, please note that the electric field and magnetic field are staggered
as shown in the Fig. 4. Thus we obtain

2F(x,j,k)
ex = ex(i, j, k) + ex(i− 1, j, k)

+ [ex(i + 1, j, k)− ex(i− 1, j, k)]δx.
(43)

The interpolated forces exerted by ex at (x, j +1, k), (x, j, k +1), and (x, j +
1, k + 1) are

2F(x,j+1,k)
ex = ex(i, j + 1, k) + ex(i− 1, j + 1, k)

+ [ex(i + 1, j + 1, k)− ex(i− 1, j + 1, k)]δx,
(44)

Parallel TRISTAN code using High Performance Fortran 11

2F(x,j,k+1)
ex = ex(i, j, k + 1) + ex(i− 1, j, k + 1)

+ [ex(i + 1, j, k + 1)− ex(i− 1, j, k + 1)]δx,
(45)

and

2F(x,j+1,k+1)
ex = ex(i, j + 1, k + 1) + ex(i− 1, j + 1, k + 1)

+ [ex(i + 1, j + 1, k + 1)− ex(i− 1, j + 1, k + 1)]δx.
(46)

respectively. Thus the interpolated forces exerted by ex at (x, y, k), (x, y, k + 1),
and (x, y, z), are

F(x,y,k)
ex

= F(x,j,k)
ex

+ [F(x,j+1,k)
ex

− F(x,j,k)
ex

]δy, (47)

F(x,y,k+1)
ex

= F(x,j,k+1)
ex

+ [F(x,j+1,k+1)
ex

− F(x,j,k+1)
ex

]δy, (48)

and

F(x,y,z)
ex

= F(x,y,k)
ex

+ [F(x,y,k+1)
ex

− F(x,y,k)
ex

]δz. (49)

respectively. The interpolated forces F(x,y,z)
ey , F(x,y,z)

ez , F(x,y,z)
bx

, F(x,y,z)
by

, and F(x,y,z)
bz

exerted by the electric field components ey, ez, the magnetic field component bx,
by, and bz can be interpolated in the same manner, respectively.

2.7 Current Deposit

As we discussed in the electric field update section, first, the change of E flux
through a cell surface (offset grid) equals the circulation of B around that surface.
Then the charge fluxes are subtracted from the B circulation later. TRISTAN
does not employ a charge density array. Only charge fluxes, i. e., the amounts of
charge flowing the faces of Yee lattice, are needed. From the Maxwell equations,
one notes that Poisson equation will always be satisfied if the charge conservation
condition:

∂ρ

∂t
= −∇ · J (50)

is satisfied. Hence the electromagnetic field can be updated from only two curl
Maxwell equations if one can enforce rigorous charge conservation numerically.
A rigorous charge conservation method for current deposit is described in detail
in (Villasenor and Buneman, 1992). In this scheme, one obtains the current
flux through every cell surface within a time step δt by counting the amount of
charge carried across the Yee lattice cell surfaces by particles as they move from
rn to rn+1 as shown in Fig. 5. In Yee lattice cell surfaces, the charge fluxes are
subtracted from each component of E field as follows:

12 Dongsheng Cai et al.

Fig. 5. The current components recorded at the point P in the Yee lattice.

ex(i, j, k) = ex(i + .5, j, k)
= ex(i, j, k)− Jx ∗ cy ∗ cz,

ex(i, j + 1, k) = ex(i + .5, j + 1, k)
= ex(i, j + 1, k)− Jx ∗ dy ∗ cz,

ex(i, j, k + 1) = ex(i + .5, j, k + 1)
= ex(i, j, k + 1)− Jx ∗ cy ∗ dz,

ex(i, j + 1, k + 1) = ex(i + .5, j + 1, k + 1)
= ex(i, j + 1, k + 1)− Jx ∗ dy ∗ dz,

ey(i, j, k) = ey(i, j + .5, k)
= ey(i, j, k)− Jy ∗ cx ∗ cz,

ey(i + 1, j, k) = ey(i + 1, j + .5, k)
= ey(i + 1, j, k)− Jy ∗ dx ∗ cz,

ey(i, j, k + 1) = ey(i, j + .5, k + 1)
= ey(i, j, k + 1)− Jy ∗ cx ∗ dz,

ey(i + 1, j, k + 1) = ey(i + 1, j + .5, k + 1)
= ey(i + 1, j, k + 1)− Jy ∗ dx ∗ dz.

and

Parallel TRISTAN code using High Performance Fortran 13

Fig. 6. The ring current to generate the dipole field of the Earth at (0, R, 0).

ez(i, j, k) = ez(i, j, k + .5)
= ez(i, j, k)− Jz ∗ cy ∗ cx,

ez(i, j + 1, k) = ez(i, j + 1, k + .5)
= ez(i, j + 1, k)− Jz ∗ dy ∗ cx,

ez(i + 1, j, k) = ez(i + 1, j, k + .5)
= ez(i + 1, j, k)− Jz ∗ cy ∗ dx,

ez(i + 1, j + 1, k) = ez(i + 1, j + 1, k + .5)
= ez(i + 1, j + 1, k)− Jz ∗ dy ∗ dx.

2.8 Position of Magnetopause

In original TRISTAN code, the Earth dipole field is located inside the simulation
domain. Before running simulations, the rough size of the Earth magnetosphere
should be determined and the size should be small enough to be inside the
simulation domain.

As shown in Fig. 6, the Ampere equation gives

B =
µ0

4π

∫
I0dl× r

r3
(51)

where the small vector element of the ring is dl = −eφr0dφ, the distance from
arbitrary point along the y-axis to dl is r2 = R2 + r2

0 − 2Rr2
0 cos φ, and the

ring current is I0. Here r0 is the ring radius, φ is the ring angle. From R2 =
r2 + r2

0 − 2rr0 cos (α + π/2), we get:

14 Dongsheng Cai et al.

sin α =
R cosφ− r0

r
. (52)

Thus the Bz at (0, R, 0) is:

Bz = −µ0I0r0

4π

∫
R cosφ− r0

r3
dφ (53)

when R À r0 is assumed, it can be

Bz(magnetopause) ∼ µ0I0r
2
0

2R3
(54)

The potential energy density of the Earth magnetic field in magnetopause is:

Wmagnetic = B2/2µ0 ∼ B2
z/2µ0 ∼ µ0I

2
0r4

0

8R6
. (55)

The kinetic energy density of solar wind flow is:

Wsolar wind =
1
2
ρsolar windV

2
solar wind ∼

1
2
(miDi + meDe)V 2

solar wind. (56)

where Di, De are the number density of ions and electron in solar wind respec-
tively. The position of the magnetopause, RMP , located where the two energy
densities are equal to each other. We obtain it from Eq. (55) and Eq. (56):

R6
MP ∼ µ0I

2
0r4

0

4(miDi + meDe)V 2
solar wind

(57)

In TRISTAN code, the Earth dipole filed is ramped-up linearly at an initial
stage of the simulation. The half dipole field ramp-up time is −o2

o3 = n, and
the final ring current charge density is ofinal = −o3× n(n + 1)(2n + 1)/3. The
ratio -o2/o3 should be an exact integer n. The number of time steps taken for
the build-up is 2n. The final value of “o” will be −o3n(n + 1)(2n + 1)/3 in the
simulation. Using Eq. (57) and the final value of “o”, the rough location of the
magnetopause can be estimated.

2.9 Field Densities

It is most important to realize that the three components of each field vector
have not been recorded at the same places in Yee lattice. To get the electric
and magnetic field components at location (i, j, k), one must form the following
averages;

ex(i, j, k) =
1
2
{ex(i− 1, j, k) + ex(i, j, k)}, (58)

ey(i, j, k) =
1
2
{ey(i, j − 1, k) + ey(i, j, k)}, (59)

Parallel TRISTAN code using High Performance Fortran 15

ez(i, j, k) =
1
2
{ez(i, j, k − 1) + ez(i, j, k)}, (60)

bx(i, j, k) = 1
2{ 1

2 [bx(i, j, k) + bx(i, j, k − 1)]
+ 1

2 [bx(i, j − 1, k) + bx(i, j − 1, k − 1)]}, (61)

by(i, j, k) = 1
2{ 1

2 [by(i, j, k) + by(i− 1, j, k)]
+ 1

2 [by(i, j, k − 1) + by(i− 1, j, k − 1)]}, (62)

and
bz(i, j, k) = 1

2{ 1
2 [bz(i, j, k) + bz(i, j − 1, k)]

+ 1
2 [bz(i− 1, j, k) + bz(i− 1, j − 1, k)]}. (63)

2.10 Formulae and Normalization

TRISTAN code uses scales such that ε0 = 1 and hence µ0 = 1/c2 (means E = D).
TRISTAN also uses scales such that time step δt = 1, grid sizes δx = δy = δz =
1, electron charge to mass ratio qe/me = −1, electron mass me = 1. Thus the
normalized ion and electron cyclotron frequencies are:

Ωe =
zeB

me
=

B

me
= B, (64)

Ωi =
zeB

mi
=

B

mi
= B × rmass. (65)

respectively. Here the mass ration rmass = me/mi. The normalized ion and
electron gyroradii are:

ρe =
meve

zeB
=

meve

B
=

ve

B
, (66)

ρi =
mivi

zeB
=

mivi

B
=

vi

rmassB
. (67)

respectively. The normalized electron and ion plasma frequencies are:

ωpe =

√
nez2e2

ε0me
=

√
ne

me
=
√

ne, (68)

ωpi =

√
niz2e2

ε0mi
=

√
ni

mi
=
√

nirmass. (69)

respectively. The normalized Alfven wave speed is:

VA =

√
B2

0

µ0ρm
= c

√
B2

0

ρm
. (70)

where ρm = neme + nimi = me(ne + ni

rmass) is the mass density. The normalized
sound speed is:

16 Dongsheng Cai et al.

Cs =
√

γeTe+γiTi

mi
=

√
γp0
ρ0

∼
√

γT
mi

∼
√

Te

mi
=

√
rmass Te

me
=

√
rmass Te. (71)

The normalized Debye length is:

λDe =
√

ε0Te

nee2
=

√
Te

ne
. (72)

In TRISTAN code, users have to specify the solar wind velocity vdrft, the
thermal ion velocity vth2i, the thermal electron velocity vth2e, the particle den-
sity Dpair, the half dipole field ramp-up time o2

o3 = N , and the final ring current
charge density:

ofinal = −o3×N(N + 1)(2N + 1)/3. (73)

From Eqs. (68), (69) and (72), please note that the plasma frequency is pro-
portional to ne

1
2 and the Debye length is proportional to ne

− 1
2 . Thus, fixing all

input parameters except the particle density, if we change the particle density in
the simulation to reduce the statistical noises or fluctuations, all physical quan-
tities will vary and the physical meanings of simulation results will change at the
same time. Varying the value of the particle density, we have to adjust all other
physical input parameters simultaneously to keep the physical problems fixed.

2.11 Stabilities and Heating Conditions

Solving Maxwell equations by the centered difference scheme in space and by
leap-frog method in time, the spatial grid δx, δy, δz and the time step δt should
satisfy the following inequality, which is called Courant condition,

δx, δy, δz > c δt (74)

where c is the light speed and δx, δy, δz is the grid size. The condition is easily
derived from the numerical dispersion relation of the light mode.

In TRISTAN code, if we consider the real physical system size of the Earth
magnetosphere, it is definitely impossible to use the grid size equal to or more
than one Debye length even if we use a very powerful parallel computer. You
can imagine that the typical Debye length in magnetopause is roughly an order
of 10 m and how many grids will be needed to simulate the whole magneto-
sphere. One trade-off to solve this problem is to reduce the grid size less than
one Debye length. However, we have to carefully avoid nonphysical instabilities
caused by the grid or numerical grid heating (Birdsall and Langdon, 1985). For
a Maxwellian velocity distribution with no drift, a rough rule of thumb is that
nonphysical instability has ignorable growth for λDe/δx > 1

π ∼ 0.3 for linear
weighting. However, when λDe ∼ 0.1δx, the lowest and strongest aliases inter-
act with the steep sides of a Maxwellian velocity distribution and there is little
Landau damping. The result is strong numerical instability. If λDe/δx decreases

Parallel TRISTAN code using High Performance Fortran 17

further the instability goes away, as it should since a cold stationary plasma
is inactive. Therefore, when the Debye length λDe is determined, a very rough
criteria to avoid nonphysical instability is to avoid the range:

o(10−1) ≤ λDe

δx
≤ 0.3.

Of course, there are many other types of nonphysical instabilities and we have
to check them carefully in the simulation .

3 Arrays in Original TRISTAN code

The motivation of TRISTAN, a fully three-dimensional (3D) electromagnetic
(EM) particle-in-cell (PIC) code written by Oscar Buneman and other collab-
orators in Stanford University, is to develop a general particle-in-cell code for
space plasma simulations (Buneman, 1993). In this section, we only discuss the
data structure and the data distribution over processors on the HPF TRISTAN
code. For the detail physics of the PIC code in general, please refer to, for ex-
amples, (Birdsall and Langdon, 1985) and (Walker, 1991).

The data structure of TRISTAN code consists of two primitive data types.
The first one is the particle data as follows:

x(mp), y(mp), z(mp), u(mp), v(mp), w(mp),

where mp= total number of particles, the positions and velocities of ions and
electrons are recorded at:

x(1 : mh), y(1 : mh), z(1 : mh),

u(1 : mh), v(1 : mh), w(1 : mh),

and
x(mh + 1 : mp), y(mh + 1 : mp), z(mh + 1 : mp),

u(mh + 1 : mp), v(mh + 1 : mp), w(mh + 1 : mp).

respectively, where mh = mp/2. The second one is the grided field data expressed
as the triple-indexed arrays of EM (ElectroMagnetic) fields as follows:

ex(i, j, k), ey(i, j, k), ez(i, j, k),

and
bx(i, j, k), by(i, j, k), bz(i, j, k).

The original TRISTAN code uses “COMMON” block clause to save and trans-
fer fields data between subroutines in the MOVER (push particles) and DE-
POSIT (deposit current data to the field grids) subroutine calls. Meanwhile
in the subroutines that processes the surfaces and edges of the grid data, the
filed data are transferred by dummy arrays in the original code. In both of these
subroutines, the field arrays are treated as single-indexed. On the other hand,

18 Dongsheng Cai et al.

triple-indexed field arrays are employed in the field solver subroutines. In the
code, single-indexed arrays are converted automatically to the triple-indexed
arrays when they passed over two subroutines.

Converting a serial Fortran program to a HPF program, we have to stress
two points that are very important for rewriting TRISTAN in HPF: [1] The
“COMMON” statement is restricted as suggested by pgHPF user guide and
there they indicated ‘We strongly recommended that programmers writing new
F90 code use features like “MODULE” ... to avoid the use of “COMMON”...’
(Koelbel, et al., 1994, Foster, 1995), in case of data overlapping, and substituted
it by “MODULE” block; [2] To control the communications, all the arrays are
treated as fixed indexes throughout the whole program. We control the commu-
nication parts using both the “field manager” and “particle manager” (Decyk,
1995).

4 Field Data Domain Decompositions

The field data are decomposed over sub-domains of that number is equal to
the number of the processors used in the simulation as indicated in Fig. 1.
In processing the current deposition that is so-called the scatter part of the
computations, to avoid large transients or variations of currents, TRISTAN uses
a “smoother” that has 27 different weights, smoothing the current deposition.
In DEPOSIT subroutine the smoothing is performed as follows:

ey(i + smx + 1, j + smy, k + smz + 1, Np) =
ey(i + smx + 1, j + smy, k + smz + 1, Np)

−sv ∗ dz ∗ dx− ss
(75)

where smx = −1 : 1, smy = −1 : 1, smz = −1 : 1,sv = sm(smx, smy, smz, Np)∗
qv and ss = sm(amx, amy, amz, Np) ∗ delt. For details, see p. 73 and p. 321 of
Lecture note by Buneman (1993). (Note that one dimensional array for ex, ey,
ez is used.) Therefore, the current deposition of one particle will be related to
three grids in each dimension, where one of them are at the backward grid and
another at the forward grids in each dimension.

In the “MODULE” block, the field arrays are written in HPF directives as
follows:

REAL,DIMENSION(nx, j, k, Np) :: ex, ey, ez

REAL,DIMENSION(nx, j, k, Np) :: bx, by, bz

where Np is the number of processor, nx = i/Np + 3 (here assuming i/Np
is not necessarily equal to be integer exactly) keeping one guard cell in the
left (backward) and right (forward) sides of the sub-domains in the domain-
decomposition direction (i.e., in the solar-magnetotail direction). Here the indices
i, j and k correspond to the numbers of field grids in x, y and z directions,
respectively. Using the HPF directive “DISTRIBUTE”, we, respectively, map
the sub-domains to each processor on a distributed parallel computer:

DISTRIBUTE(*,*,*,BLOCK) ONTO Np :: ex,ey,ez

Parallel TRISTAN code using High Performance Fortran 19

DISTRIBUTE(*,*,*,BLOCK) ONTO Np :: bx,by,bz

In order to separate the communication parts from the computation parts, each
sub-domain keeps extra cells, the so-called guard or ghost cells, that store the
field data information in the first and last grids of that sub-domain in the decom-
position direction. Fig. 1 illustrates this concept of the data mapping over the
sub-domains or processors. Here the communications are required after updating
the field data every time step. In the field manager (Decyk, 1995), the data sent
to the neighbor processors are packed in the working arrays: Cex(1, j, k, Np),
Cey(1, j, k, Np), and Cez(1, j, k, Np), before they are sent to the neighbor sub-
domains. Thus the field data communications are performed by the pgHPF
CSHIFT construct after the data are packed in the working arrays. The fol-
lowings are the related parts of the HPF programs in the field manager (Decyk,
1995):

Cex(1,:,:,:)=ex(2,:,:,:)

Cex=CSHIFT(Cex,+1,4)

ex(nx-1,:,:,:)=Cex(1,:,:,:)

...

5 Particle Data Domain Decompositions

The particle data can be written in HPF directives as follows:

REAL,DIMENSION(m,Np) :: xe, ye, ze, xi, yi, zi

REAL,DIMENSION(m,Np) :: ue, ve, we, ui, vi, wi

where i and e, respectively, stand for ion and electron, the number m is the array
size in each sub-domain. To ensure that the enough space are reserved to store
the particle data due to the load-imbalance, m must be 10-30 % larger than the
average number of particles. The number Np is the number of processors, and
is the index used in the HPF “DISTRIBUTE” directive. As the particles move
in time in the simulations, the physical position of some particles may cross the
sub-domain boundaries, and move to the neighbor sub-domains. When a par-
ticle moves from one sub-domain to another, the data of the particle left the
sub-domain must be sent to the appropriate neighbor processor at every time
step. Before updating and sending the particle data, we have to sort the parti-
cles that should be sent to another sub-domain, and pack them in the working
arrays: CRi(:, Np), CLi(:, Np), CRe(:, Np), and CLe(:, Np). The number of the
ions and electrons sent in right and left are denoted by the arrays ionspsR(Np),
ionspsL(Np), lecspsR(Np), and lecspsL(Np), respectively. In our HPF TRIS-
TAN code, we send both the packed arrays and their particles number arrays to
the neighbor sub-domains as follows:

20 Dongsheng Cai et al.

CRi=CSHIFT(CRi, -1,2)

ionspsR=CSHIFT(ionspsR, -1)

...

Fig. 7 shows the example of the particle data distributions and communications.
After both the particle numbers and the packed working arrays are sent and re-
ceived by each appropriate processors, the received particles are sorted and put
into the appropriate part of the particle arrays in that sub-domain. The com-
munications and sorting of these particles are performed in the particle manager
(Decyk, 1995) as shown in Fig. ??.

6 Programming Comments on HPF Communications in
PC Cluster

For benchmark purpose of HPF TRISTAN, a dual PentiumPro PC cluster con-
sists of 16 PCs and each PC have dual 200MHz PentinumPros with 128MB EDD
DIMM memories. The PCs in the PC cluster system are hooked through 100
Base-T ethernet with 100 Base-T switching Hub. Redhat Linux version 4.1 was
used as their operating systems. The pgHPF compiler version 1.7 was installed
for HPF computations.

One of the most difficult problems in our HPF TRISTAN code is the commu-
nication programming, especially, the determination of the buffer sizes which is

Fig. 7. Diagram of particle array decompositions and communications, with processor
number Np = 4, grid number in decomposition direction=12.

Parallel TRISTAN code using High Performance Fortran 21

used to pack the data sent to the neighbor processors. Of course, we can define a
buffer size large enough to send the particle or grid data to neighbor processors
at one time. However, as shown in Fig. 8, our experience shows that when the
buffer sizes become larger than some critical values, in this case 1456 bytes in
our PC cluster system, the communication suddenly becomes unstable, and the
communication times suddenly jump up to 5 to 8 times larger than those less
than the critical value 1456 bytes. As indicated in the Fig. 8, the communication
times when the buffer size go beyond 1456 bytes are not uniquely determined and
rather indeterministic. In order to avoid the sudden communication slow-down,
we have to carefully choose the buffer size. We have to split the particles or grids
data into smaller pieces of buffers, pack the smaller data, and send the data
to the neighbor processors one by one. Thus we can avoid the large slow-down
of the simulations in this system due to the unstable HPF communications. In
our HPF TRISTAN code, the buffer sizes can be varied and can be set without
modifying the program. We can first evaluate the best buffer size and run the
simulations. The best buffer size can be chosen as indicated in Fig. 8. For ex-
amples, in this figure, the best buffer sizes can be chosen between 640 to 1400
bytes.

The reasons for performance degradation in communications with this longer
packets than 1456 bytes are not yet investigated in detail. One possibility of this
degradation is due to MTU of the ethernet. MTU is the Maximum Transmission
Unit that IP is allowed to use for a particular interface. If your MTU is set

Fig. 8. Buffer sizes and CSHIFT communication times in HPF.

22 Dongsheng Cai et al.

too big, in this case beyond ∼1456 bytes your packets must be fragmented, or
broken up, by a switching hub along the path to the other PCs. This may result
in a drastic decrease in throughput. However, we have not identified the source
of this communication degradation. We would like to leave this investigation to
our future research.

7 Benchmark and Simulation Results

Table 1. Benchmark resluts with time step=100, particle number =1200,000, and grid
number =185× 65× 65.

Procs Time(s) speedup Sp efficiency ε(%) εeff−grid(%)

1 4836 1.0 100. 100

2 3706 1.3 65.2 96.9

3 2416 2.0 66.7 95.4

4 1769 2.7 68.4 93.9

5 1457 3.3 66.3 92.5

6 1195 4.0 67.4 91.1

7 1034 4.7 66.8 89.8

8 937.4 5.2 64.5 88.5

9 881.9 5.5 60.9 87.2

10 762.7 6.3 63.4 86.0

11 713.0 6.8 61.7 84.9

12 652.0 7.4 61.8 83.7

13 616.8 7.8 60.3 82.6

14 575.9 8.4 60.0 81.5

15 572.5 8.4 58.3 80.4

16 516.4 9.4 58.5 79.4

17 497.2 9.7 57.2 78.4

18 470.5 10.3 57.1 77.4

19 453.5 10.7 56.1 76.4

20 426.6 11.3 56.7 75.5

In Table 1, the parameter εeff−grid is defined as:

εeff−grid =
Numtotal grid −Numtotal guard cell

Numtotal grid
.

where Numtotal grid is the total grid number in decomposition direction, and
Numtotal guard cell is the total number of guard cell. Table 1 shows the total
times, speedups and parallel efficiency vs the number of processors. The total
computation time of single processor was measured by the original version of
TRISTAN code compiled by pgf77 compiler with the optimization level -O2
option. Fig. 9 shows the speed up vs processor number.

With fixing the problem size and increasing the processor number, the grid
number in one sub-domain is reduced gradually. For example, 40 extra ghost grid

Parallel TRISTAN code using High Performance Fortran 23

cells in total must be added to each sub-domains in decomposition direction
or in x for 20 processors. It is about 25 percents of the total grid number in
decomposition direction in this case. Thus the communication overhead become
insignificant comparing with the total PIC computation time as we increase the
number of the processors. The increase of the communication overhead reduces
the parallel efficiency in the table. If the communication overhead is insignificant,
it is very hard to improve the parallel efficiency of the code without varying the
problem size. However, even the most advanced parallel computer nowadays, it
is not so easy to increase the problem sizes as we increase the number of the
processors due to the large data sizes we have to store in each simulation run.
Thus the optimal parallel efficiency of the scalable relation between the problem
sizes and the number of processors are difficult to be measured in our simulation.
However, Fig. 9 shows the high linearity of our HPF TRISTAN code and the
code scales well. In addition, with the HPF compiler overhead and the load-
imbalance overhead due to the Earth dipole field, the parallel efficiency around
60-65 % is affordable in this type of large scale simulations.

Fig. 9. Speed up vs processor number.

PIC simulations exploring the solar wind-magnetosphere interaction with
this HPF code were accomplished on the PentiumPro PC cluster (Cai and Lu,
1999). After measuring the communication efficiencies via different processor
numbers, the CFSHIFT function and its communication have been optimized
by splitting a large data into many small size ones. So that a high performance

24 Dongsheng Cai et al.

communication is achieved. We also have run the code on Hitachi supercomputer
SR2201 and Fujitsu VPP 5000 etc..

Table 2. Simulation parameters of case 1.

grids 205x165x165

initial ion-electron pairs 500,000,000

Light speed 0.5

ε0 1.0

mi / me 16

qe / me 1.0

∆x 1

∆t 1

electron temperature Te 0.004

ions temperature Ti 0.00025

solar-wind speed 0.25

IMF no

ωpe 0.2

λD/∆x 0.4

plasma parameters g∼2.8

In case 1, we use a 205 by 165 by 165 grid and 50,000,000 plasma particles.
The other parameters are listed in table 2: (1) the center of the loop current is

Fig. 10. The ion density profiles at (a) XZ and (b) XY planes of case 1.

Parallel TRISTAN code using High Performance Fortran 25

located at (100∆, 82.5∆, 82.5∆); (2) the solar-wind drift velocity is 0.5c, where
c is the light speed; (3) mi/me = 16; (4) use 8 particles per grid cell in aver-
age; (5) Te = 0.004 and Ti = 0.00025; (6) the plasma parameter is about 2.8.
Fig. 10 (a) and (b) show the ion density profiles on the XZ and XY planes at
time step 1500 respectively. It is clear that the complete configuration of mag-
netosphere, including bow shocks, magnetopause, magnetosheath, magnetotail,
plasma sheet, and polar cusp are generated. In this case, more basic kinetic be-
haviors of space plasma in the magnetosphere have been investigated including a
time-varying IMF. We use a northward IMF (Bz = 0.01) for an initial condition.
At time step 500, the IMF is switched into southward (Bz = −0.02) at the sun-
ward boundary of the domain. It is shown that after the arrival of a southwad
IMF, due to the reconnection at dayside magnetopause the convection pattern
across the entire polar cap begins to change in a few minutes. In contrast, the
response of the equatorward motion of the open-closed field-line boundary that
depends on the local time is delayed about 20 minutes relative to the onset of the
reconnection at the dayside magnetopause. This time delay is considered as the
time required to convect the newly merged flux from the dayside magnetopause
to the nightside inner magnetosphere.

Table 3. Simulation parameters of case 2.

grids 185x125x125

initial ion-electron pairs 24,000,000

Light speed 0.5

ε0 1.0

mi/me 16

qe/me 1.0

∆x 1

∆t 1

electron temperature Te 0.4

ions temperature Ti 0.1

solar wind speed 0.25

IMF yes

ωpe 0.2

λD/∆x 0.4

plasma parameter g∼3

In case 2, we use a 185 by 125 by 125 grid and 24,000,000 total particles.
The other parameters are list in table 3. It is shown in Fig. 11 that when the
southward IMF arrived, the magnetic field of magnetosphere is modified. Some
structures are formed. The nature of these structures is still under investigation.

We investigate the relationship between the IMF and the particle flux in
polar region in case 3, in which we used a 85 by 105 by 105 grid and 3,500,000
paired particles. The other parameters are listed in table 4. It is assumed that

26 Dongsheng Cai et al.

Fig. 11. Magnetic field lines at time step 1540 of case 2.

Table 4. Simulation parameters of case 3.

grids 85x105x105

initial ion-electron pairs 3,500,000

light speed 0.5

ε0 1.0

mi/me 16

qe/me 0.5

∆x 1

∆t 1

ion temperature Ti 5.9× 10−6

electron temperature Te 4.8× 10−5

solar wind speed 0.25

IMF yes

ωpe 0.088

λD/∆x 0.93

plasma parameter g∼3.2

Parallel TRISTAN code using High Performance Fortran 27

Fig. 12. The ions density profile via time step in the cusp region of case 3.

the cusp region is located at 25 < x < 35, 45 < y < 60, 56 < z < 60. The IMF
is initially zero, and switch on three times, i.e., Bz = −0.01 during time step
100-120, Bz = −0.02 during time step 600-620 and Bz = −0.005 during time
step 900-920. The ion density profile in cusp region via time step was shown in
Fig. 12. The mean ion velocities in cusp region via time step was shown in Fig.
13. The total thermal energy in cusp region via time step was shown in Fig. 14.
Total particle energy in cusp region via time step was shown in Fig. 15.

Fig. 13. Mean ion velocity and IMF via time step in cusp region of case 3.

It is clearly shown that the first and second switch-on of the southward IMF
can cause particle flowing into cusp regions after some time steps. Many particles
are entered into cusp regions. It seems that not all southward IMFs can cause
the particle-entry into cusp regions. Only those IMFs that are strong enough
can cause particle-entry into cusp regions.

28 Dongsheng Cai et al.

Fig. 14. Total thermal kinetic energy and IMF via time step in cusp region of case 3.

Fig. 15. Total particle energy and IMF via time step in cusp region of case 3.

The figures show that in the first two IMFs switch-on, the total particle
number and the mean ion velocities decreased from the local maximum to the
local minimum after the southward IMF switch-on. The intense southward IMF
could push the particles into cusp region to magnetotail-ward directly. This may
be related to substorm or magnetic reconnection.

8 Concluding Remarks

In the present paper, we have successfully parallelized the three-dimensional full
electromagnetic and full particle code using HPF. The code is originally the
same as the TRISTAN code and the code is for the space plasma simulations.
As shown in Fig. 9 and Table 1, fixing the problem size, our HPF TRISTAN

Parallel TRISTAN code using High Performance Fortran 29

code has a high linearity and scales well. However, our HPF code introduces
about 70% overhead and the reason for this overhead is not yet investigated. We
have also parallelized the three-dimensional skeleton-PIC code introduced by
V. K. Decyk (Decyk, 1995) in the same parallel algorithm (Liewer and Decyk,
1985, Decyk, 1995) using HPF. The HPF three-dimensional skeleton-PIC code
introduces about 20% overheads (Cai, et al., 1999). One possibility to explain the
larger overheads in our HPF TRISTAN code over the HPF skeleton-PIC code is
that there are more complicated data structures in HPF TRISTAN code than
those in the skeleton-PIC code. Our PCs in the cluster have no enough memory
and this may degrade the performance of the PCs. Another possibility is the
load-imbalance originated in the TRISTAN code as we discussed previously. Our
HPF TRISTAN code has the Earth dipole filed which generates and simulates
the Earth magnetosphere in one of sub-domains, and this may cause a large
load-imbalance. We would like to leave the detailed investigation to our future
work.

The parallelization algorithm we used in our HPF TRISTAN code is basically
the same as (Liewer and Decyk, 1985) and (Decyk, 1995). We separate the
communication parts from the computation parts. Thus the code can easily be
converted to MPI or PVM code by replacing the HPF “CSHIFT” constructs to
appropriate message passing interfaces. Our experiences show that the utilization
of HPF “FORALL” or “DO INDEPENDENT” constructs in the data-parallel
manner without separating the communication parts from the computation parts
results in almost no gain of speedups or very poor speedups.

We have also compared the HPF skeleton-PIC code with the MPI or PVM
skeleton-PIC code. The HPF code degradation of the total CPU time over the
MPI or PVM code is only 10-15 % (Cai, et al., 1999) in this case. Thus we expect
that we should be able to enjoy the easier HPF programming with a very small
performance degradation even in the more complicate codes like the TRISTAN
code.

Acknowledgment

The authors thank Professor Viktor K. Decyk for his help using the skeleton PIC
codes. The authors also thank Dr. Bertrand Lembege for invaluable comments
regarding to this work.

References

1. Birdsall C. K. and A.B.Langdon, Plasma Physics via Computer Simulation,
McGraw-Hill, New York, (1985)

2. Buneman O., TRISTAN. In: Matsumoto H., and Omura, Y. (eds.): Computer
Space Plasma Physics: Simulation Techniques and Software. Terra Scientific, Tokyo,
(1993) 67-84

3. Cai, D., Q. M. Lu, and Y. T. Li, Scalability in Particle-in-Cell code using both PVM
and OpenMP on PC Cluster, Proceedings of 3rd Workshop on Advanced Parallel
Processing Technologies (1999) 69-73

30 Dongsheng Cai et al.

4. Decyk, V. K.: Skeleton PIC Codes for Parallel Computers, Comput. Physcs. Comm.
87, (1995) 87-94

5. Foster, I.: Designing and Building Parallel Programs, Addison-Wesley, (1995)
6. Koelbel, C.H. et al., The High Performance Fortran Handbook, The MIT

press,(1994)
7. Liewer, P. C. and V. K. Decyk: A General Concurrent Algorithm for Plasma

Particle-in-Cell Simulation Codes, J. Comput. Phys. 85, (1985) 302-322
8. Homepage of Portland Group Inc.: http://www.pgroup.com
9. Villasenor, J., and O. Buneman: Rigorous Charge Conservation for Local Electro-

magnetic Field Solvers, Comput. Physcs. Comm. 69, (1992) 306-316
10. Walker D. W., Particle-in-cell Plasma Simulation Codes on the Connection Ma-

chine, Computing Systems in Engineering, 1 (1991) 307-319
11. Yee, K. S, Numerical Solution of Initial Boundary Value Problems Involving

Maxwell’s Equations in Isotropic Media, IEEE Trans. Antennas Propagat. 14,
(1966) 302-307

Index

Alfven Speed, 15

Bow Shock, 25
Buffer Size, 21
Buffer Zone, 4
Bulk Velocity, 4

CFSHIFT Function, 23
Charge Flux, 5
Cold Plasma, 17
Courant Condition, 16
Current Deposit, 11
Current Flux, 11
Cyclotron Frequency, 15

Debye Length, 9
Dispersion Relation, 16
Domain Decomposition, 18

Electric Acceleration, 8
Electric Field, 5
Electric Field Update, 7
Energy Density, 14

Field Decomposition, 18
Field Density, 14
Field Manager, 3
Field Push, 5
Fields Symmetry, 5
Force Interpretation, 9

Guard Cell, 18
Gyroradii, 9

HPF, 1

IMF, 25
Instability, 17
Ionosphere, 4

Landau Damping, 16
Leap-Frog Method, 4
Light Speed, 16
Linear Interpolation, 4
Load-Imbalance, 4

Magnetic Field, 5
Magnetic Reconnection, 28
Magnetic Rotation, 8
Magnetopause, 13
Magnetosheath, 25
Magnetosphere, 4
Magnetotail, 25
Maxwellian Velocity Distribution, 16
MPI, 2
MTU, 21

Newton-Lorentz Equation, 3
Normalization, 15
Number Density, 14

Particle Decomposition, 19
Particle Density, 16
Particle Flux, 4
Particle Manager, 3
Particle Update, 5
Particle-Entry, 27
PGI, 3
PIC, 1
Plasma Frequency, 15
Plasma Parameter, 25
Plasma Sheet, 25
Polar Cusp, 25
PVM, 2

Ring Current, 13
RPM, 2

Skeleton-PIC code, 29
Solar Wind, 4

32 Index

Solar Wind-Magnetosphere interaction, 4

Sound Speed, 15

Spatial Grid, 6, 16

Speedup, 22

SPMD, 2

Sub-Domain, 1

Substorm, 28

The Earth dipole magnetic field, 4
Thermal Velocity, 4
Time Step, 15
TRISTAN, 1

Work Array, 19

Yee lattice, 5

